We’re going to need a lot more grid storage. New iron batteries could help.

Good News Notes:

One of the first things you see when you visit the headquarters of ESS in Wilsonville, Oregon, is an experimental battery module about the size of a toaster. The company’s founders built it in their lab a decade ago to meet a challenge they knew grid operators around the world would soon face—storing electricity at massive scale.

Unlike today’s lithium-ion batteries, ESS’s design largely relies on materials that are cheap, abundant, and nontoxic: iron, salt, and water. Another difference: while makers of lithium-ion batteries aim to make them small enough to fit inside ever shrinking phones and laptops, each version of the iron battery is bigger than the last.

In fact, what ESS is building today hardly resembles a battery at all. At a loading dock on the back side of the ESS facility, employees are assembling devices that fill entire shipping containers. Each one has enough energy storage capacity to power about 34 US houses for 12 hours.

The company, which last year became the first long-duration energy storage company to go public and has ambitions to open factories around the world, will soon begin work on a battery that will dwarf even these truck-size versions. In partnership with the utility company Portland General Electric, ESS plans to construct one that will fill a half-acre building on land adjacent to its factory It’s expected to have almost 150 times the capacity of the biggest batteries the company ships today.

ESS’s key innovation, though, is not the battery’s size—it’s the chemistry and engineering that allow utilities to bank a lot more energy than is economically feasible with grid-connected lithium-ion batteries, which are currently limited to about four hours of storage.

The iron “flow batteries” ESS is building are just one of several energy storage technologies that are suddenly in demand, thanks to the push to decarbonize the electricity sector and stabilize the climate. As the electric grid starts depending more on intermittent solar and wind power rather than fossil fuels, utilities that just a couple of years ago were looking for batteries to store two to four hours of electricity are now asking for systems that can deliver eight hours or more. Longer-lasting batteries will be required so that electricity is available when people need it, rather than when it’s generated—just as ESS’s founders anticipated.

Good chemistry

Craig Evans and Julia Song, the founders of ESS, began working on an iron flow battery in their garage in 2011. A married couple, they met while working for a company developing fuel cells. Song (now the chief technology officer of ESS) is a chemist, and Evans (ESS’s president) is an engineer and designer.

They saw the price of renewable energy systems dropping dramatically and predicted that this would drive demand for energy storage. An electric grid that is 80% powered by solar and wind, for example, would require an affordable way to store energy for at least 12 hours.

Currently, about 95% of the long-duration energy storage in the United States consists of pumped-storage hydropower: water is pumped from one reservoir to another at higher elevation, and when it’s released later, it runs through turbines to generate electricity on its way back down. This simple method works well but is limited by geography.

Batteries don’t have that limitation. However, most grid-scale batteries operating today are lithium-ion batteries. Relatively expensive, they also deteriorate within a few years and are made from difficult-to-recycle materials that can burst into flames or explode. Worse, if you want to double the storage capacity of your battery array, you have to buy twice as many batteries. That makes it too expensive to store energy for longer than a few hours, says Scott Litzelman, who manages a program that focuses on long-term energy storage at ARPA-E, the US agency that funds research and development of advanced energy technologies.

Flow batteries, like the one ESS developed, store energy in tanks of liquid electrolytes—chemically active solutions that are pumped through the battery’s electrochemical cell to extract electrons. To increase a flow battery’s storage capacity, you simply increase the size of its storage tank. When the battery grows to the size of a building, those tanks become silos.

Inside the flow battery’s electrochemical cells, two electrolytes are separated by a membrane. One electrolyte flows past a positive electrode as it’s pumped through the cell, and the other electrolyte flows past a negative electrode. In ESS’s battery, these two electrolytes are identical: iron salts dissolved in water.

As the electrolytes flow through the cell, chemical reactions take place on both sides of the membrane. When an electric current is charging the battery, the electrolyte at the battery’s negative electrode gains electrons, and dissolved iron salts are deposited onto the electrode’s surface as solid iron.

When the battery discharges, the process is reversed: the electrolyte loses electrons at its negative electrode, the plated iron returns to its dissolved form, and the chemical energy in the electrolyte is converted back to electricity. At the positive electrode, the opposite process occurs: the electrolyte loses electrons and “rusts” to a brownish fluid while the battery is charging, and this process reverses during discharge.

In a conventional lithium-ion battery like the one in a mobile phone or electric car, the cell and electrolyte are contained inside a single package. “What you have at the start is what you get,” says Evans.

But with a flow battery, keeping the electrolyte in an external tank means that the energy-storing part is separate from the power-producing part. This decoupling of energy and power enables a utility to add more energy storage without also adding more electrochemical battery cells.

The trade-off is that iron batteries have much lower energy density, which means they can’t store as much energy as a lithium-ion battery of the same weight. And flow batteries require more up-front investment and maintenance than lithium-ion batteries.

However, when it comes to safely storing large amounts of energy for long periods, they’re hard to beat. And that’s exactly what grid operators will need to do a lot more of in the coming years.


The batteries that utilities use today typically store power for four hours or less. That’s fine for tasks such as smoothing out short-lived frequency fluctuations and supply drops, but as the electricity sector moves toward 100% clean energy, “you absolutely can’t do it with four-hour batteries,” says Hugh McDermott, senior vice president for sales and business development at ESS.

To accommodate the ups and downs of solar and wind generation, most grid operators use natural-gas “peaker plants,” which can start up rapidly when electricity is in high demand. A battery that can provide 16 hours of storage would be cheaper to install than any peaking system, McDermott says….”

View the whole story here: https://www.technologyreview.com/2022/02/23/1046365/grid-storage-iron-batteries-technology/

Leave a Reply